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The hippocampus is a center of learning, memory, and spatial navigation. This

region is divided into the CA1, CA2, and CA3 areas, which are anatomically

different from each other. Among these divisions, the CA2 area is unique in

terms of functional relevance to sociality. The CA2 area is often manually

detected based on the size, shape, and density of neurons in the hippocampal

pyramidal cell layer, but this manual segmentation relying on cytoarchitecture

is impractical to apply to a large number of samples and dependent on

experimenters’ proficiency. Moreover, the CA2 area has been defined based on

expression pattern of molecular marker proteins, but it generally takes days to

complete immunostaining for such proteins. Thus, we asked whether the CA2

area can be systematically segmented based on cytoarchitecture alone. Since

the expression pattern of regulator of G-protein signaling 14 (RGS14) signifies

the CA2 area, we visualized the CA2 area in the mouse hippocampus by RGS14-

immunostaining and Nissl-counterstaining and manually delineated the CA2 area.

We then established “CAseg,” a machine learning-based automated algorithm to

segment the CA2 area with the F1-score of approximately 0.8 solely from Nissl-

counterstained images that visualized cytoarchitecture. CAseg was extended to

the segmentation of the prairie vole CA2 area, which raises the possibility that

the use of this algorithm can be expanded to other species. Thus, CAseg will be

beneficial for investigating unique properties of the hippocampal CA2 area.
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1. Introduction

The hippocampus plays a pivotal role in memory (Scoville and Milner, 1957; Victor
and Agamanolis, 1990; Squire and Zola-Morgan, 1991; Kol et al., 2020), learning (Schapiro
et al., 2017; Kragel et al., 2021), and spatial navigation (O’Keefe and Dostrovsky, 1971; Brun
et al., 2002) and is anatomically divided into three subfields: the CA1, CA2, and CA3 areas
(van Strien et al., 2009; Matsumoto et al., 2019). Among these three subdivisions, the CA2
area is distinct from the CA1 and CA3 areas in terms of functional relevance to sociality

Frontiers in Neuroanatomy 01 frontiersin.org

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://doi.org/10.3389/fnana.2023.1172512
http://crossmark.crossref.org/dialog/?doi=10.3389/fnana.2023.1172512&domain=pdf&date_stamp=2023-06-28
https://doi.org/10.3389/fnana.2023.1172512
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnana.2023.1172512/full
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/


fnana-17-1172512 June 22, 2023 Time: 15:25 # 2

Takeuchi et al. 10.3389/fnana.2023.1172512

(Hitti and Siegelbaum, 2014; Stevenson and Caldwell, 2014; Oliva
et al., 2020; Rey et al., 2022) and aggression (Pagani et al., 2015;
Leroy et al., 2018). Previous studies have also suggested that the
CA2 area is associated with psychiatric disorders such as autism
spectrum disorder (Modi et al., 2019), manic depression (Benes
et al., 1998, 2001), schizophrenia (Benes et al., 1998, 2001), and
temporal lobe epilepsy (Whitebirch et al., 2022).

To better understand the unique properties of the CA2 area in
physiology and pathology (Dudek et al., 2016), reliable methods
for the segmentation of the CA2 area are required. Researchers
often manually map the areas of the hippocampal formation in
humans (Amunts et al., 2005; Amunts and Zilles, 2015) and
rodents (Tzakis and Holahan, 2019) based on neuronal size, shape,
and density. For example, in rodents, CA2 pyramidal neurons
are similar to CA3 neurons in that their somata are larger and
less densely packed than those of CA1 neurons (Lorente de
Nó, 1934; Ishizuka et al., 1995), but CA2 pyramidal neurons
are differentiated from CA3 pyramidal neurons in terms of
apical dendritic branching (Ishizuka et al., 1995; Helton et al.,
2019). Moreover, CA2 neurons lack thorny excrescences on their
proximal dendrites, unlike typical CA3 neurons (Ishizuka et al.,
1995); note that a small population of CA3 pyramidal neurons
is athorny (Hunt et al., 2018), whereas some CA2 pyramidal
neurons are thorny (Radzicki et al., 2023). As for the rodent CA2
area, such manual segmentation that relies on cytoarchitecture
is valid to some extent (Tzakis and Holahan, 2019), but still,
impractical when applied to a large number of samples due
to time constraints. In addition, the criteria for the manual
segmentation are dependent on experimenters’ proficiency and
are prone to their bias (Powell et al., 2008). Recently, the CA2
area has been redefined based on gene expression (Lein et al.,
2005), leading to the discovery and usage of molecular markers
for the CA2 area, such as RGS14, STEP, and PCP4 (Kohara
et al., 2014; Matsumoto et al., 2016; Noguchi et al., 2017; Pang
et al., 2019). Less biased and more accurate identification of
the rodent CA2 area requires immunohistochemistry (Hitti and
Siegelbaum, 2014; Kay et al., 2016; Leroy et al., 2018; Meira
et al., 2018; Brown et al., 2020; Whitebirch et al., 2022), but
it takes more days to complete immunohistochemistry than
Nissl-staining only. Thus, we questioned whether the CA2 area
could be segmented more reliably and automatically based on
cytoarchitecture alone.

To this end, we first immunostained RGS14-positive neurons
in the mouse hippocampus together with Nissl-counterstaining,
and manually delineated the CA2 area with the aid of RGS14-
immunofluorescence. We then attempted to implement a machine
learning-based algorithm to segment the CA2 area in Nissl-
counterstained images that visualized cytoarchitecture alone; we
coined “CAseg” for this algorithm. We further investigated whether
CAseg could be extended to brain sections of prairie voles, rodents
as small as mice.

Abbreviations: STEP, striatum-enriched protein-tyrosine phosphatase;
PCP4, Purkinje cell protein 4; RGS14, regulator of G-protein signaling 14; TP,
true positive; FP, false positive; TN, true negative; FN, false negative; DAPI,
4’,6-diamidino-2-phenylindole.

2. Materials and methods

2.1. Data acquisition

2.1.1. Animal ethics
Animal experiments were performed with the approval of

the animal experiment ethics committee at the University of
Tokyo (approval numbers: P29–15 and P3-1) and in accordance
with the University of Tokyo guidelines for the care and use of
laboratory animals. The experimental protocols were in accordance
with the Fundamental Guidelines for the Proper Conduct of
Animal Experiments and Related Activities in Academic Research
Institutions (Ministry of Education, Culture, Sports, Science and
Technology, Notice No. 71 of 2006), the Standards for Breeding
and Housing of and Pain Alleviation for Experimental Animals
(Ministry of the Environment, Notice No. 88 of 2006) and the
Guidelines on the Method of Animal Disposal (Prime Minister’s
Office, Notice No. 40 of 1995).

A total of fourteen animals were housed in groups (unless
otherwise specified) under conditions of controlled temperature
and humidity (22 ± 1◦C, 55 ± 5%) and maintained on a 12 h:12 h
light/dark cycle with ad libitum access to food and water. All efforts
were made to minimize animal suffering.

2.1.2. Histology
Twelve young adult (4–6 weeks old) male ICR mice (Japan

SLC, Japan) were anesthetized via intraperitoneal administration
of 150 mg/ml urethane dissolved in saline; two adult prairie
voles, a gift from Dr. Shinichi Mitsui at Gunma University,
were anesthetized with 2–3% isoflurane followed by urethane.
Anesthesia was confirmed by the lack of reflex responses to tail and
toe pinches. The mice and prairie voles were transcardially perfused
with chilled 0.01 M phosphate-buffered saline (PBS) followed by 4%
paraformaldehyde in PBS. The animals were then decapitated, and
their brains were carefully removed. These brains were postfixed in
4% paraformaldehyde overnight and washed with PBS three times
for 10 min each. Serial coronal sections were prepared using a
vibratome at a thickness of 100 µm from the anterior region to the
posterior region; that is, the 100-µm-thick coronal sections were
continuously picked up and collected.

Basic immunohistochemistry procedures have been described
previously (Matsumoto et al., 2016; Noguchi et al., 2017; Kashima
et al., 2019; Liu et al., 2021). Sections were blocked with 10%
goat serum and 0.3% Triton X-100 in PBS for 1 h at room
temperature and incubated with a mouse primary antibody against
RGS14 (1:500, 75–170, NeuroMab, CA, USA) for 16 h at 4◦C.
Sections were washed with PBS three times for 10 min each and
then incubated with Alexa Fluor 488-conjugated goat secondary
antibody against mouse IgG (1:500, A11029, Invitrogen, MA,
USA) and NeuroTrace 435/455 blue fluorescent Nissl stain (1:500,
N21479, Thermo Fisher Scientific, MA, USA; hereafter, Nissl) for
6 h at room temperature, followed by another three 10-min washes
with PBS.

2.1.3. Confocal imaging
Before images of each set of slices were captured, the laser

power for each fluorescence channel was set just below the
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FIGURE 1

Preprocessing of fluorescent images of the CA2 and surrounding areas in the hippocampus. (A) Representative images of a section of the mouse
hippocampus immunostained with RGS14 (green, middle) and counterstained with Nissl (blue, left). A merged image is also shown (right). (B)
Workflow of denoising the original Nissl-stained image using custom-written scripts. An original image is binarized using a command in ImageJ,
which is specified by single quotes (i–ii). The binarized image is despeckled and eroded/dilated (ii–iii). Then, a mask image is created (iii–iv). Using
the mask image, the original image is denoised (iv–v). Each arrow in purple indicates transformation from a previous image to the next one using
ImageJ, while green arrows signify generation of a denoised image from masked and original images based on a principle of Hadamard product
using Python. (C) Workflow of creating a labeled image of the CA2 area. A mask image of the pyramidal cell layer is created from the original image
(i–ii) in the similar manner as panel (B) and then manually segmented by skilled experimenters to create a mask image that labels the CA2 area (ii–iii).

intensity that would cause fluorescence saturation (Yamashiro et al.,
2021). The images (1024 × 1024 pixels, 16-bit intensity) were
acquired at a Z-interval of 1.0 µm using an FV1200 confocal
microscope (Olympus, Tokyo, Japan) equipped with 20× objectives
and Z-stacked using ImageJ software (National Institutes of Health,
MD, USA). Note that all images used in this study did not contain
any portion of the dentate gyrus.

2.2. Data analysis

The images were processed and analyzed using ImageJ software
and Python 3. The summarized data are presented as the
mean± the standard deviation unless otherwise specified. P < 0.05
was considered statistically significant.

2.2.1. Preprocessing
Images that contained clearly defined cell shapes and minimal

staining irregularities were selected by skilled experimenters since
poor-quality input images (i.e., without any features to be learned)
usually degrade the performance of subsequent machine learning
and deep learning. Images containing the entire CA2 area and parts
of the CA1 and CA3 areas were used as training data so that the
current deep learning scheme could learn the difference between
the CA2 area and other (i.e., CA1 and CA3) areas.

Using ImageJ, the images in the stacks were extracted, and the
brightness and contrast were adjusted by a tool accessed through
Image > Adjust > Brightness/Contrast > ‘Auto’. The color channels
were split, and two separate channels (e.g., RGS14 and Nissl) of
images were thereby obtained (Figure 1A). Consequently, a total of
295 images from 16 slices from 9 mice were used (Supplementary
Table 1).

To remove noise that might interfere with machine learning,
the area of the pyramidal cell layer was roughly defined as follows.
Using an ImageJ tool accessible at Process > Binary > Convert

to Mask, the Nissl images were roughly binarized; note that
in some cases, the Nissl images were further processed with a
threshold of Nissl fluorescence preset automatically by a tool
available at Image > Adjust > Threshold > Auto (Figure 1B, i–
ii). The binarized images were despeckled (by a tool accessible
at Process > Noise > Despeckle) and eroded/dilated (using a tool
accessed through Process> Binary> Erode or Dilate) for denoising
(Figure 1B, ii–iii). The largest contour was gleaned and applied
to the original image to remove all particles (i.e., noise) outside
the contour to create a mask image (Figure 1B, iii–iv). Using a
custom-written Python script, all objects outside the segmented
image (obtained by the process above) were removed from the
corresponding Nissl image in such way that each pixel value (i.e.,
0, 1, . . ., 255) in the original Nissl image was either transformed
into 0 or preserved when each corresponding pixel value in the
mask image was 255, respectively. The noise removal was based
on the principle of the Hadamard product of a matrix and another
binary matrix (containing 0 or 1) that represents the mask image
(Figure 1B, iv–v). These preprocessing procedures have been
streamlined by custom-made Python (i.e., Jython and CPython)
routines available at https://x.gd/BPFxj.

Image segmentation masks of the CA2 area (i.e., masked
images) were next created manually and defined as labeled data.
Our manual algorithm was first run to label the pyramidal cell
layer of the hippocampus in a manner similar to the procedure
illustrated in Figure 1B. Three skilled professionals independently
identified and manually annotated the CA2 area from the
corresponding fluorescence image of Nissl-staining and RGS14-
immunostaining. Only images including the CA2 area agreed upon
by all professionals were used as labeled data (Figure 1C). Note
that the three skilled experimenters determined the CA2 area based
not only on the fluorescence image of RGS14 immunofluorescence
images but also on the images of the Nissl-stained cell bodies.

As for Figure 5, two separate channels for RGS14 and Nissl
staining were utilized to manually identify both the pyramidal cell
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FIGURE 2

CAseg: a machine learning-based automated algorithm for
segmentation of the hippocampal CA2 area. (A) U-Net architecture.
The U-Net algorithm processes the input images of the
hippocampus (left), which are the outputs of preprocessing (see
Figure 1B, v). The algorithm then trains the model using
corresponding labeled images (see Figure 1C, iii). The number of
channels is denoted above the blue and orange boxes. (B) Test
image data are applied to the trained model to obtain output images
(i–ii), which are roughly transformed into segmentation mask
images using k-means++ (ii–iii). The rough segmentation masks are
finally dilated to identify the CA2 area (i.e., predicted images).

layer and the CA2 area, after which all noise outside the pyramidal
cell layer was eliminated in the similar way as illustrated in Figure 1
(see also Supplementary Table 1). Image segmentation masks of
the CA2 area were then created. Note that the aim was to see if the
same model trained using slices of mouse brains can be used for
slices of prairie vole brains.

2.2.2. U-Net architecture
The U-Net-based model in our algorithm contained the

following layers: (i) convolution and (ii) dropout (Figure 2A; Long
et al., 2014; Ronneberger et al., 2015; Yamashiro et al., 2021).

(i) In the process called convolution, kernels were slid over
the input vector, and the result of multiplying the kernel’s
own values with those of the input data is output to the
next layer, called feature maps (O’Shea and Nash, 2015).
The convolutional layer surrounded a feature matrix with
zero (i.e., zero padding) so that the size of the inputs and
outputs would be equal. Then, a rectified linear unit (i.e.,
ReLU), expressed as the following function (Agarap, 2018),
f(x) = max(0, x), was adopted. Since there were multiple

patterns of output filters in the convolution, multichannel
feature maps were obtained in this process.

(ii) Deep learning algorithms often come with a problem called
overfitting, in which the model adapts extremely well to
the training data but does not perform well on test data.
Overfitting often occurs when the model is trained using
less-common data or puts excessive focus on complicated
relationships in the input data. To avoid overfitting, dropout,
a method in which artificial neurons are randomly omitted
from the neural network, was utilized. The probability that
each unit would be retained was 0.5 in our model (Srivastava
et al., 2014; dos Santos and Papa, 2022).

The weight of the present model was initialized (He et al.,
2015), giving adequate consideration to the characteristics of
ReLU. The contracting path (Figure 2A, left) applies two 3 × 3
convolutions, followed by dropout and 2 × 2 max-pooling with
stride 2 for downsampling. After downsampling, the number of
feature channels was doubled, and the same process was performed
for the subsequent input matrix. The expansive step (Figure 2A,
right) required a 2 × 2 convolution for upsampling to halve the
number of feature channels. The output after upsampling was
coupled on the correspondingly cropped feature map from the
contracting path, succeeded by three 3 × 3 convolutions. The final
1 × 1 convolution layer employed a sigmoid activation function,
and the number of channels finally turns to 1, matching that of
the true label (Ronneberger et al., 2015). The U-Net model was
implemented using Keras, a Python deep learning library, and the
TensorFlow backend.

2.2.3. Deep learning-based algorithm in CAseg
After preprocessing, the U-Net model was implemented to

characterize the CA2 area (Figure 2A), and the most plausible areas
were extracted. The neural network was optimized by adaptive
moment estimation (i.e., Adam) with a learning rate of 0.001.
The other parameters were as follows: beta_1 (i.e., an exponential
decay rate for the first moment estimates) = 0.9, beta_2 (i.e., an
exponential decay rate for the second moment estimates) = 0.999,
and epsilon = 1e-7.

In the deep learning scheme of CAseg, to prevent similar
images from being utilized in learning, 295 pairs of Nissl-stained
fluorescence images and image segmentation masks of the CA2 area
were shuffled without changing the combination of the pairs, after
which the data were split into five subgroups (S1, S2, S3, S4, and
S5). The pairs of images in one of the five subgroups (e.g., S1) were
chosen as test data, while all other images included in the rest of the
subgroups the rest of the subgroups (e.g., S2, S3, S4, and S5) were fed
into the U-Net model as training data. This procedure was repeated
for all Si (i = 1, 2, 3, 4, 5) so that five models would be created in
total. In the training session, 20% of the training data were used
as validation data, and a pair was extracted from the rest of the
data. The model was trained with the pair, and binary cross-entropy
loss was calculated from predicted images and the corresponding
true labels. The model was trained to minimize the loss value. The
same process was repeated for 100 epochs. The model was saved or
overwritten exclusively when the loss was minimized. Note that the
training data were shuffled before each epoch. The model training
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FIGURE 3

Comparison between predicted and labeled images. (A) Representative images predicted by CAseg (green). (B) Images labeled as the CA2 area (red;
see Figure 1C, iii), each of which corresponds to the predicted image (green) in the same column. (C) Images showing the overlap between the
predicted and labeled images (yellow). Note that the images of the hippocampi of both hemispheres were randomly selected.

FIGURE 4

Parameter-independent high performance metrics of CAseg. Each row displays the threshold (%) of fluorescence intensity, while each column
indicates the number of iterations of dilation. (A) F1-score of CAseg with a 20% threshold and no dilating iteration. The test images were predicted by
CAseg trained on random labels (blue) and true labels (red). Each pair of points connected by a line (black) signifies the same test image. The average
F1-score of all test data is shown in green. (B) The same as panel (A), but for 20% and one iteration. (C) The same as panel (A), but for 20% and two
iterations. (D) The same as panel (A), but for 30% and no iteration. (E) The same as panel (A), but for 30% and one iteration. (F) The same as panel (A),
but for 30% and two iterations. (G) The same as panel (A), but for 40% and no iteration. (H) The same as panel (A), but for 40% and one iteration. (I)
The same as panel (A), but for 40% and two iterations. Statistics are compiled by paired t-tests (n = 295 images; Supplementary Table 4). *P < 0.05.
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was performed on a GeforceRTX2080Ti GPU (Nvidia, CA, USA),
and it took approximately 1 h to complete the training.

2.2.4. k-means++ algorithm in CAseg:
postclustering of the hippocampal subfields

After the prediction of a test dataset by the trained U-Net
(Figure 2B, i), the intensity of each pixel in the “output” images
ranged between 0 and 1 (Figure 2B, ii). Higher values indicated
stronger confidence that the pixels were inside the CA2 area
(Figure 2B, ii). Thus, a conventional machine learning method
called “k-means++” was additionally implemented (Arthur and
Vassilvitskii, 2007); this method separates the given data in an
unsupervised manner into the desired number of clusters based
on the relationship among pixel coordinates, using scikit-learn,
a Python machine learning library. This method enabled us to
identify the CA2 area. The parameters for k-means++ were as
follows: n_int (i.e., the number of times when the k-means++
algorithm was run with different centroid seeds) = 10, max_ite
(i.e., the maximum number of iterations of the k-means++
algorithm for a single run) = 300, tol (i.e., relative tolerance
with regards to the Frobenius norm of the difference in
the cluster centers of two consecutive iterations to declare
convergence) = 1e-4, and algorithm (i.e., k-means++ algorithm to
use) = “llyoid.”

For a given output image, an “intensity threshold” was set
at 20, 30, 40, or 50% of the highest intensity value among all
pixels, after which pixel values lower than the threshold were
translated into nil. The translated images were eroded twice with
a 3 × 3 kernel to exclude tiny clusters. The eroded images were
processed with k-means++ (Figure 2B, ii–iii); note that there
should be three clusters in k-means++, because the hippocampal
pyramidal cell layer was divided into the CA1, CA2, and CA3
areas. Then, the predicted image segmentation of the CA2 area
was produced by dilation with a 2 × 2 kernel (Figure 2B, iii–iv).
This dilation was iterated once, twice, or three times, or no dilation
was performed (i.e., zero iteration) (Figure 4 and Supplementary
Tables 2–5).

Since there were thresholds of 20, 30, 40, and 50%, and the
number of iterations in the dilation process was four (see above),
there were 16 patterns to validate (Figure 4 and Supplementary
Tables 2–5). Among these patterns, the model that yielded the
highest F1-score (i.e., in the case of a threshold of 30% fluorescence
intensity and 1 iteration) was utilized to predict the CA2 area of
new slices from mice and prairie voles (Figure 5).

To assess the performance of our machine learning-based
algorithm, surrogate data (i.e., incorrect CA2 labels for the
fluorescence images of Nissl staining) were created by shuffling
the 295 pairs of fluorescence images of Nissl staining and
corresponding image segmentation masks of the CA2 area. These
images were applied to our machine learning-based algorithm to
evaluate performance scores of randomly labeled data.

2.2.5. Evaluation of model performance
The performance of the model was evaluated using the

precision, recall, IoU (intersection over union) and F1-score
(Rezatofighi et al., 2019; Orita et al., 2020; Ogasawara et al., 2021;
Yamashiro et al., 2021; Ottom et al., 2022). These metrics were

defined as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN

IoU =
TP

TP + FP + FN

where TP, FP, and FN represent the true positive, false positive,
and false negative, respectively. The F1-score was calculated as the
harmonic mean of the precision and recall.

3. Results

We immunostained coronal sections of the mouse brain against
RGS14, a CA2 marker protein (Evans et al., 2014; Kohara et al.,
2014) and counterstained them with Nissl stain (Figure 1A),
detecting abundant RGS14-immunoreactive cells (i.e., putative
CA2 neurons) in the hippocampal pyramidal cell layer for all 12
mice tested (Figure 1A).

We denoised the images by removing all objects outside
the pyramidal cell layer for our machine learning scheme
(Figure 1B) to obtain segmentation masks of the pyramidal cell
layer. Based on fluorescence images of Nissl and RGS14 staining,
skilled experimenters manually delineated the CA2 area from the
segmentation masks of the pyramidal cell layer; this delineated area
was defined thereafter as ground truth (Figure 1C).

For CAseg, we first utilized U-Net, a type of deep neural
network that has been trained and has learned to make dense
predictions for per-pixel tasks using fewer images for more
accurate segmentations (Long et al., 2014; Ronneberger et al.,
2015; Yamashiro et al., 2021). We fed these images [i.e., the
denoised pyramidal cell layer (Figure 1B, v) and the segmentation
mask of the CA2 area (Figure 1C, iii)] into U-Net for training
(Figure 2A). The trained models labeled pixels in the test image
with continuous values between 0 and 1 (i.e., the probability
of being included in the CA2 area); however, our U-Net-based
algorithm labeled the pyramidal cell layer not only in the CA2 area
but also in the CA1 and CA3 areas (Figure 2B). Thus, we further
implemented k-means++ and subsequent dilation to automatically
isolate the CA2 pyramidal cell layer from the U-Net-predicted
images (Figures 2B, 3).

To evaluate the segmentation performance of CAseg, we
calculated the performance metrics of the F1-score, recall,
precision, and IoU on the pixelwise segmentation data. Since
these metrics might have been vulnerable to the parameters of the
fluorescence intensity threshold and the number of iterations of
dilation (see Section “2. Materials and methods”), we calculated
the four types of metrics for different combinations of the
parameters (i.e., intensity threshold: 20, 30, 40, or 50%; the
number of dilation iterations: 0, 1, 2, or 3), confirming that the
performance metrics for models on true labels were significantly
better than those for models on random labels for each of
the 16 cases (Figure 4 and Supplementary Tables 2–5). In
particular, we found that an intensity of 30% and one iteration
maximized the F1-score (Figure 4 and Supplementary Table 4).
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FIGURE 5

Application of CAseg to the prairie vole hippocampus. (A) Representative image of a section of the prairie vole hippocampus immunostained for
RGS14 (green) and counterstained with Nissl stain (blue). (B) Representative images of the prairie vole CA2 area predicted by CAseg (green, left).
Images labeled as the CA2 area (red, middle), each of which corresponds to the predicted image (green). Images showing the overlap between the
predicted and labeled images (yellow, right). (C) The F1-scores of CAseg predicting test images of mice (red) and prairie voles (blue). Each point
represents the F1-score of one image.

This best model had significantly higher F1-scores when trained
on true labels than random labels for the images of the rostral,
intermediate, and caudal hippocampus. This suggests that CAseg
segments the CA2 area, irrespective of the rostrocaudal level of
sections (Supplementary Figure 1), although it is still unclear
what characteristics (e.g., the curvature and thickness of the
pyramidal layer, and the shapes and sizes of cells) in the Nissl
images were being recognized by CAseg. When we divided the
denoised hippocampus (Figure 1B, v) into three clusters using only
k-means++, the F1-score (of k-means++ only) was significantly
lower than that of CAseg (Supplementary Figure 2), indicating
that for CAseg, the U-Net-based algorithm is necessary for the
accurate segmentation of the CA2 area.

To investigate whether CAseg optimized for the brain sections
of mice was also applicable to those of small rodents similar to mice,
we prepared 100-µm-thick coronal sections from adult prairie
voles in a similar manner to mice and applied CAseg to the vole
brain sections. We found RGS14-immunoreactive neurons in the
hippocampus of prairie voles (Figure 5A) and acquired 9 images
from 9 new stacks each in mice and prairie voles. For a given
image from each animal, we predicted the CA2 area with five
pretrained deep learning models of CAseg and obtained five F1-
scores, which we then averaged. We repeated this calculation for all
18 images (i.e., 9 images from mice and 9 from prairie voles) and
found almost the same F1-score in voles as in mice [0.76 ± 0.10
(mouse) vs. 0.82 ± 0.05 (prairie vole)], suggesting that CAseg was
also applicable to the vole hippocampus (P = 0.13, t16 = 1.61, n = 9
and 9 images from 5 mice and 2 prairie voles, respectively, Student’s
t-test; Figures 5B, C).

4. Discussion

CAseg, the machine learning-based algorithm established in
this study, identified the CA2 area in Nissl-stained sections from
mice. Using CAseg, we segmented the hippocampal pyramidal cell

layer and delineated the CA2 area at a high level of performance.
Moreover, our model that was trained on mice enabled us to
identify the CA2 area of prairie voles as well.

CAseg requires a relatively small number (∼102) of images as
input data to segment the hippocampal CA2 area, compared with
∼104 samples for a general neural network model (Goodfellow
et al., 2016). Deep learning alone would not have segmented
the CA2 area because of the small datasets in this study.
However, we combined deep learning with conventional machine
learning in this study to overcome this problem. Indeed, we
prepared a limited number of images, in keeping with the 3Rs
principle in animal experimentation (replacement, reduction, and
refinement) (Maestri, 2021), but this problem was overcome by
the combination of U-Net and k-means++. We found the high
F1-scores for random labels, which we assume resulted from the
postclustering by k-means++ (Figure 4). When the U-Net-based
part of CAseg was trained on the randomly labeled dataset, the
U-Net produced incorrect output with relatively low confidence,
but k-means++ compensated the low confidence to correctly cluster
the hippocampal subfields and segment the CA2 area to some
extent.

Intuitively, the performance of our models trained on true
labels should have varied depending on parameters (i.e., the
intensity threshold and the number of iterations of dilation; see
Section “3. Results”) during postprocessing because the number
of pixel coordinates obtained from a test image was affected by
the parameters. Nevertheless, each performance metric (i.e., the
precision, recall, F1-score, and IoU) was stable even when tested
with various thresholds and iterations (Figure 4), suggesting that
CAseg is robust against these parameters and saves time that would
have been spent adjusting them, even though the algorithm was
created using a small dataset.

The definition of the CA2 area has been controversial. The
CA2 area was originally identified and described based on its
intrahippocampal and extrahippocampal connectivity such as
afferent innervation from the supramammillary nucleus and lack
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of mossy fiber innervation from the dentate gyrus (Lorente de Nó,
1934; Maglóczky et al., 1994; Kohara et al., 2014; Robert et al.,
2018). The rodent CA2 area is also distinguished from the CA1 and
CA3 areas in terms of morphology (see Introduction). Recently,
the CA2 area has been molecularly defined as a broader region
(between the CA1 and CA3 areas) than classically identified (Lein
et al., 2005; Kohara et al., 2014). This definition of the CA2 area is
visually obvious on histochemical staining for molecular markers
such as RGS14 (Kohara et al., 2014; Gerber et al., 2019), PCP4
(Kohara et al., 2014; Alexander et al., 2018), STEP (Kohara et al.,
2014; Matsumoto et al., 2016), and Necab-2 (Zimmermann et al.,
2013; Gerber et al., 2019). Nevertheless, even if such molecular
markers are used, the border between the CA2 and CA1/CA3 areas
is difficult to distinguish, sometimes requiring Gaussian blurring
to avoid arbitrary segmentation (San Antonio et al., 2014). In this
light, when only somata or nuclei are stained (e.g., by using Nissl
stains or DAPI), the molecular marker-based definition of the CA2
area is ambiguous at least for humans; this ambiguity may cause
experimenter-to-experimenter variability in the definition of the
CA2 area. In this study, skilled experimenters manually defined the
CA2 area as an RGS14-positive region. In Nissl-stained sections,
this molecularly isolated region was indistinguishable from the
CA1 and CA3 areas for humans, but our computerized algorithm,
CAseg, precisely identified the manually defined CA2 area without
RGS14 immunofluorescence (Figures 3, 4), possibly by capturing
some characteristics of cytoarchitecture in the CA2 area. In this
sense, CAseg may be comparable to skilled experimenters in terms
of segmentation of the CA2 area.

RGS14 has recently been used as a marker protein of the CA2
pyramidal cells of mice (Lee et al., 2010; Noguchi et al., 2017;
Alexander et al., 2019). However, it remained to be investigated
whether prairie vole hippocampal neurons expressed RGS14;
note that Rgs14 is expressed in the medial preoptic area of the
hypothalamus of adult male prairie voles (Seelke et al., 2018). Using
immunohistochemical techniques, we found RGS14 expression
in the vole hippocampus and surmised that the RGS14-positive
area represented the CA2 subfield because the hippocampal
pyramidal cell layer was explicitly segmented (Figure 5A). We
then demonstrated that CAseg could be extended to prairie voles
based on the fact that the performance metric for predicting the
RGS14-positive area was not significantly different between prairie
voles and mice (Figure 5B). Although we did not physiologically
demonstrate that the RGS14-positive area in the vole hippocampus
signified the CA2 area, performance of CAseg suggests that RGS14
can also be used as a marker protein for the vole CA2 area.
Since the CA2 area has also been investigated in other rodent
species such as rats (Benoy et al., 2021), guinea pigs (Bartesaghi
and Severi, 2004), and gerbils (Hisamatsu et al., 2016), a modified
form of CAseg would precisely identify the rodent CA2 area in
Nissl-stained brain sections. While the neurons of primates such
as monkeys and humans also densely express RGS14 in a certain
subarea of the hippocampus, which might represent the CA2 area
(Squires et al., 2018), extending capabilities of CAseg for such
phylogenetically distant species is the future challenge. However,
our automated segmentation algorithm, CAseg, opens a new door
for neuroscientists to systematically isolate the rodent CA2 area and
will help them examine its structural and functional specificity in
the rodent hippocampus.
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