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Using bright-field images of cultured human-induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs), we trained a convolutional neural network (CNN), a machine learning technique, to decide
whether the qualities of cell cultures are suitable for experiments. VGG16, an open-source CNN frame-
work, resulted in a mean F1 score of 0.89 and judged the cell qualities at a speed of approximately 2000
images per second when run on a commercially available laptop computer equipped with Core i7. Thus,

CNNs provide a useful platform for the high-throughput quality control of hiPSC-CMs.
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Drug-induced cardiotoxicity, such as QT prolongation and tor-
sades de pointes, is one of the main reasons for drug attrition' and
contributes to 16% of the adverse effects reported in clinical trials.?
Thus, establishing preclinical cardiac safety assay systems with
high clinical predictability is of particular importance; however,
due to species differences, conventional models for safety phar-
macology studies using animal-derived tissues and cells have failed
to fully predict drug responses in humans.” Human-induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)* may
help resolve this problem. However, one concern is the inconsistent
qualities of hiPSC-CMs; the viability of cultured hiPSC-CMs varies
depending on product lots, experimental trials, and the skills of
experimenters, even though experimental procedures are identical,
and some cultures fail to grow normally. To attain reproducibility,
well-trained experimenters must inspect the nature of hiPSC-CMs
visually and exclude low-quality hiPSC-CMs from data analyses
with care. This manual process is restricted by human resources
and prevents high-throughput screening for cardiotoxicity. Given
that previous studies have shown that machine learning is useful
for the quality control of hiPSC colonies,” ’ we reasoned that a
similar machine learning approach is also applicable to the quality
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control of hiPSC-CMs. To test this hypothesis, we utilized a con-
volutional neural network (CNN), which is a machine learning
technique that was inspired by the visual system® and has been
widely used for image classification. We trained a CNN model using
bright-field images of two-dimensionally cultured hiPSC-CMs to
accurately classify the images into ‘normal’ (i.e., useable in exper-
iments) or ‘abnormal’ (unusable in experiments).

iCell Cardiomyocytesz. or commercially available hiPSC-CMs,
were obtained from Cellular Dynamics International (CDI; Madi-
son, WI, USA). hiPSC-CMs were thawed according to the CDI pro-
tocol, suspended at a density of 400 cells/ulL in the iCell-
Cardiomyocytes plating medium (CDI), and seeded at
40,000 cells/well into fibronectin-coated 96-well plates (Corning,
Corning, NY, USA). The plates were incubated at 37 °C under a 5%
CO; atmosphere. The culture medium was refreshed after 24 h and,
thereafter, half of the medium was refreshed every 2—3 d.

After 5—7 d of incubation, the cells were treated with doxoru-
bicin (0.1, 0.3, and 1.0 uM; FUJIFILM Wako Pure Chemical Corpo-
ration, Osaka, Japan), sunitinib (0.1, 0.3, and 1.0 uM; Santa Crus
Biotechnology), imatinib (0.3, 1.0, and 3.0 uM; Sigma—Aldrich, St.
Louis, MO, USA), vandetanib (0.1, 0.3, and 1.0 uM; Toronto Research
Chemicals, Toronto, Canada), nilotinib (0.1, 0.3, and 1.0 upM;
Chemscene LLC, Monmouth Junction, NJ, USA) acetylsalicylic acid
(10 uM; Nacalai Tesque, Kyoto, Japan), famotidine (10 pM; Sigma-
—Aldrich), or vehicle (0.1% DMSO; Sigma—Aldrich) solutions. These
drug treatments were conducted to expand the variability in the
qualities of hiPSC-CM cultures through their potential toxicity,
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which may strengthen the robustness and versatility of machine
learning. Bright-field images of cultured hiPSC-CMs (1280 x 1080
pixels, 16-bit intensity) were obtained before and 13 d after the
drug treatments using a 20 x objective and CQ1 confocal quanti-
tative image cytometer (Yokogawa Electric, Tokyo, Japan).

A total of 624 images were experimentally collected (Fig. 1A)
and the qualities of the cultures were inspected by a well-trained
experimenter and labeled as ‘normal’ (n = 556 images) or
‘abnormal’ (n = 68 images). The dataset was randomly split into 9
groups, and each group was used once as a testing dataset. The
remaining 8 groups were split into training dataset (seven groups)
and validation dataset (one group). The images in training, valida-
tion, and testing dataset were digitally increased to 14,000, 2000
and 2000 images, in which normal and abnormal images equally
existed, respectively using data augmentation, in which randomly
cropped 224 x 224-pixel sub-images were rotated 90°, 180°, 270°,
or 360° and flipped vertically or horizontally (Fig. 1B). A total of
grayscale 18,000 images were converted into RGB-colored photos
using the Python library Pillow.

We used Chainer 4.3.0 to construct a VGG16 architecture
(Fig. 2A) that had been pretrained using the ImageNet dataset” for
transfer learning, which is a machine-learning technique that em-
bodies effective learning when the number of datasets is limited.'’
The VGG16 architecture contains a total of 16 layers, which consist
of 13 convolutional layers and 3 fully connected layers. The con-
volutional layers are used for extracting image features, such as
edges, colors (low-level features), and faces (high-level features).
The fully connected layers are used for image classification through
nonlinear combination of the extracted image features. The max
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Fig. 1. Representative images of hiPSC-CMs and a workflow diagram for our
experimental procedures. A, Bright-field images of hiPSC-CMs are labeled as ‘normal’
or ‘abnormal’. B, Workflow diagram. Images were labeled and split into training
(77.8%), validation (11.1%) and testing datasets (11.1%). Then images were data
augmented. (i) VGG16 was retrained using the training sets, while its performance was
tested using the validation sets. (ii) The post-training model was evaluated based on
accuracy, precision, recall and F1 score using the testing set. To avoid accidental
dependence on randomly assigned datasets, processes (i)-(ii) were repeated nine
times, and the results are shown as the mean + s.e.m. or the boxplots of the 9 models.
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Fig. 2. The network architecture and UMAP visualization of the output of the
VGG16 fc7 layer. A, The pretrained VGG16 model was used for transfer learning. Except
for eighth fully connected layer (fc8 layer), all layers were frozen and used as a feature
extractor. The number of nodes in the fc8 layer was reduced from 1000 to 2 and used
for the binary prediction of normal or abnormal images. B, Uniform manifold
approximation and projection (UMAP) visualization of the output of the VGG16 sev-
enth fully connected layer (fc7 layer) for 9000 normal (gray) and 9000 abnormal
images (black).

pooling layers perform down-sampling of image features to reduce
the computational cost and obtain the robustness to translation
invariant. The term “VGG” is derived from the name of developers’
research group “Visual Geometry Group”. All convolutional layers
of VGG16 were frozen and used as fixed feature extractors, except
for the eighth fully connected layer (fc8 layer). The number of nodes
in the fc8 layer was changed from original 1000 nodes to 2 nodes
for binary classification. To facilitate the calculation, the outputs
(4096-dimensional feature vectors) of the fc7 layer were calculated
for all 18,000 images and stored in advance. These fc7 feature
vectors were visualized using uniform manifold approximation and
projection for dimensional reduction (UMAP), which is a nonlinear
dimensionality reduction algorithm based on a combination of
Riemannian geometry and algebraic topology in the metric reali-
zation of fuzzy simplicial sets.'"'? A total of 4096 dimensions of the
feature vectors were reduced into two dimensions using UMAP
(Python implemented with default parameters n_neighbors = 15,
min_dist = 0.1, and metric = ‘euclidean’). The data points of two
classes were likely separated in the UMAP space (Fig. 2B; n = 18,000
images). This separation encouraged us to train the VGG16 model.

Using the training dataset, we trained the VGGI16 fc8 layer on a
CentOS7 computer equipped with an AMD Ryzen™ 5 1600 central
processing unit, an NVIDIA GeForce GTX 1070 graphics processing
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unit, and a 32 GB random access memory (RAM) to accurately
predict two classes of images: normal or abnormal. The weights
between the 4096-dimensional nodes of the fc7 layer and the two
final nodes of fc8 layer were gradually updated using a stochastic
gradient descent algorithm in batches of 2048 images per iteration
via an AMSGrad Optimizer,"” with a learning rate of 0.001. Learning
was monitored based on the performance of the prediction with
the validation datasets.

We evaluated our VGG16 model based on four parameters (ac-
curacy, precision, recall, and F1 score), which are commonly used in
the field of machine learning. Precision and recall reflect how false
positive rates and false negative rates are small, respectively. Ac-
curacy reflects how the overall predictions are correct, and F1,
which is defined by the harmonic average of precision and recall
and means the balance between precision and recall, is similar but
usually more robust than accuracy when the datasets are imbal-
anced between classes. The accuracy increased gradually during
training (Fig. 3A). To avoid overfitting, training was stopped at a
maximum of 500 epochs unless the cross-entropy loss on the
validation set decreased during the 20 successive epochs (Fig. 3B).
One training session spent less than 5 min per 14,000 images. The
parameters in the epoch where the cross-entropy loss on the
validation set was the lowest were adopted as the final model.

To assess the performance of the post-training VGG16, we per-
formed a 9-fold cross-validation using the testing dataset. On
average, the accuracy, precision, recall, and F1 score were
0.897 + 0.01, 0.946 + 0.005, 0.843 + 0.02, and 0.890 + 0.01,
respectively (Fig. 3C; mean + 10,000 times bootstrapped s.e.m. of
the 9 trained models). We also trained the same VGG16 model
using randomly label-assigned images to estimate the level of
prediction. The accuracy, precision, recall, and F1 score changed to
0.546 + 0.02, 0.545 + 0.02, 0484 + 0.05, and 0.507 + 0.03,
respectively (Fig. 3C; n = 9 models), where accuracy, precision,
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Fig. 3. Performances of the training, validation and testing datasets. A, B, Repre-
sentative model performances during training. The accuracy (A) and cross-entropy loss
(B) are plotted against the training iterations. The gray and black lines indicate the
training datasets and validation datasets, respectively. C, Comparisons of accuracy,
precision, recall, and F1 score of the 9-fold model cross-validation using testing dataset
between the correct labels (gray) and random labels (white). *P < 0.001 (10,000 per-
mutation tests).

recall and the F1 score were significantly lower than the true pa-
rameters of the VGG16 that was trained using real datasets
(*P < 0.001; 10,000 permutation tests). Thus, our VGG16 model
correctly predicted two classes: normal and abnormal. The calcu-
lation for the prediction used less than 0.1 s per 2000 images. Using
a commercially available low-spec laptop computer equipped with
Core i7-6700HQ and 4 GB RAM, the calculation speed was
approximately 1 s per 2000 images.

In this study, we established a method for the automated quality
control of hiPSC-CMs. Certain explicit or implicit features differ
between images of hiPSC-CMs with normal and abnormal qualities.
Well experienced researchers can perceive such differences, but it
is usually difficult or even impossible to orally communicate such
discrimination skills (or intuitions). We discovered that after
training, a CNN was able to successfully discriminate abnormal
hiPSC-CMs from normal ones. Compared to humans, CNNs are
dominant in terms of the cross-trial stability of task performance
(reproducibility), speed of prediction, mental health in terms of
work ethic, and unit labor cost. Indeed, our model performed at a
speed of 2000 images per second, even on a low-cost computer
purchased in a mass market.

Some limitations exist in this study. First, we used a single
photography device. For universal usability of our approach, bright-
field images taken by other devices will be needed for training and
testing. Second, we trained only the VGG16 fc8 layer for transfer
learning. Although there is a trade-off between the calculation
speed and performance, full retraining of VGG16 will be effective
for a better performance. A previous study demonstrated that the
performances of CNNs depend on pretrained models." More
advanced pretrained models may enhance the overall performance.
Third, we used random data augmentation to increase the number
of images. During this process, similar images might have been
generated and made the classification easier. More images will be
needed to test model robustness.

In summary, we demonstrated, for the first time, that CNNs can
assess the qualities of cultured hiPSC-CMs; otherwise, only well-
experienced experts can assess these qualities. We hope that
automated quality control systems using machine learning work
not only as a decision supporting tool for humans but also as a
complete alternative to humans. Our work is the first step toward
this end.
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